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Abstract. The critical behaviour of non-linear susceptibility of a two-component composite is
studied in this paper. The first component of fractionp is non-linear and obeys a current–field
(J–E) characteristic of the formJ = g1v + χ1v

β while the second component of fractionq
is linear with J = g2v. Near the percolation thresholdpc or qc, we examine the conductor–
insulator (C–I) limit (g2 = 0) and superconductor–conductor (S–C) limit(g2 = +∞). For
the C–I limit andp > pc, the effective linear and non-linear response functions behave as
ge ≈ (p − pc)

t andχe(β) ≈ (p − pc)
t2(β), respectively. For the S–C limit andq < qc, ge and

χe(β) are found to diverge asge ≈ (qc − q)−s andχe(β) ≈ (qc − q)s2(β). Within the effective-
medium approximation, the exponents are found to bes = t = 1 ands2(β) = t2(β) = (β+1)/2,
pc = 1/d andqc = (d − 1)/d. By using a connection between the non-linear response of the
random non-linear composite problem and the resistance or conductance fluctuations of the
corresponding random linear composite problem, the exponentst2(β) ands2(β) are found to be
t2(β) = −κ((β + 1)/2) + [(β + 1)/2]t [(3 − β)/2]dν, s2(β) = κ ′((β + 1)/2) + [(β + 1)/2]s +
[(3+β)/2]dν, respectively, wheret (s) is the conductivity exponent in a C–I(S–C) composite,d

is the dimension of the composite andν is the correlation-length exponent ind dimensions,
κ((β + 1)/2) and κ ′((β + 1)/2) are given byψR((β + 1)/2) + [(β + 1)/2](dν − ζR) =
κ((β + 1)/2) + dν, ψG((β + 1)/2) + [(β + 1)/2](dν − ζG) = κ ′((β + 1)/2) + dν, where
ψR((β + 1)/2)(ψG((β + 1)/2)) characterizes the scaling of the [(β + 1)/2]th cumulant of the
global resistance (conductance) distribution due to local resistance (conductance) fluctuations
in the corresponding linear C–I(S–C) composites,ζR = t − (d − 2)ν and ζG = s + (d − 2)ν.
We prove thatt2(β) is a monotonically increasing function ofβ while s2(β) is a monotonically
decreasing function ofβ, which have the following special values:t2(1+) = t − dν < 0 and
s2(1+) = ζG + dν(d = 2); t2(3) = 2t − κ(2) and s2(3) = 2s + κ ′(2); t2(+∞) = +∞ and
s2(+∞) = 1 + dν(d = 2). The critical behaviour of the non-linear susceptibility in a C–I
composite is very different from that of the non-linear susceptibility in a S–C composite and
some unexpected results of the critical behaviour of non-linear susceptibility in a C–I network
are reported in this paper.

1. Introduction

Composite materials have long been known to have electrical and optical properties very
different from those of their constituents [1]. The differences are particularly marked near a
percolation threshold, i.e. a point at which one of the two components of the composite first
forms a closed connected path extending throughout the sample. For a composite comprised
of two materials with conductivitiesg1 and g2, the effective conductivityge exhibits the
power law (in the limit in whichg2 approaches zero) [2]

ge ≈ g1(p − pc)
t (p > pc) (1)
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wherep is the volume fraction of material 1 andpc is the percolation threshold for material
1. Conversely, ifg1 � g2, then, asq approachesqc from below, it is believed thatge

diverges according to the law [3]

ge ≈ g2(qc − q)−s (q < qc) (2)

whereq is the volume fraction of material 2 andqc is the percolation threshold for material
2. The exponentst and s are believed to depend on the dimensionality and possibly also
on the composite microstructure [4], as in continuum percolation, where the distribution
of resistances has power-law singularities. The dependence on ‘composite microstructure’
exists not only fors and t , but also for other exponents, as was pointed out by Tremblay
et al [5]. For lattice models,t ≈ 1.3 in two dimensions(d = 2) [6, 7] and t ≈ 1.958 for
d = 3 [7], while s ≈ 1.3 for d = 2 [7] ands ≈ 0.76 for d = 3 [7].

The problem is further complicated by the fact that, for realistic composites, the non-
linearity may have an important role in the electrical transport phenomena [8–23]. A typical
example consists of studying a non-linear composite medium in which an inclusion with
non-linear current–field (I–V ) characteristics

J = g1v + χ1v|v|β−1 (β > 1) (3)

whereχ1|v|β−1 � g1, is randomly embedded in a host with linear response

J = g2v (4)

whereg1 andg2 are linear conductivities andχ1 is the non-linear susceptibility. The volume
fractions of the two components arep andq, respectively. We havep + q = 1. For such
a system, substantial theoretical progress in studies of the effective non-linear response
has been made for the cubic non-linearityβ = 3 case in the past few years. Stroud and
Hui [10] studied the dilute limit in which a small concentration of non-linear material is
embedded in a linear host. They demonstrated a relation between the random non-linear
composite problem and the noise problem in the corresponding random linear composite.
An effective-medium approximation (EMA) [11] for a non-linear composite is proposed for
calculating the effective non-linear response of a random mixture at higher concentrations.
A systematic perturbative approach [16, 17] has also been developed to evaluate the effective
response in mixtures in which both the inclusions and the host materials may be non-linear.
For the case of arbitrary non-linearity, it has been studied by Hui [13] within the framework
of the Maxwell–Garnett formula in the dilute limit of the non-linear component. Such
composites are of practical interest because they may have a large non-linear susceptibility
in two different circumstances: near the percolation threshold and near a surface plasmon
resonance. In this paper we concentrate on the first. Near the percolation thresholdpc, we
examine the conductor–insulator (C–I) limit(g2 = 0) and the superconductor–conductor
(S–C) limit (g2 = +∞). For the C–I limit andp > pc, the behaviour of the effective linear
responsege is given by (1) and the non-linear-response functionχe(β) behaves as [20, 21]

χe(β) ≈ (p − pc)
t2(β). (5)

For the S–C limit andq < qc, the behaviour of the effective linear responsege is given by
(2) and the non-linear-response functionχe(β) behaves as

χe(β) ≈ (qc − q)−s2(β). (6)

The critical exponentst2(β) and s2(β) are novel universal characteristics of non-linear
electrical transport in self-similar or percolating networks. Indeed they are not related
in any simple way to the geometrical exponents and the linear transport exponentst and
s. Although a wide variety of approaches [23] has been applied to the determination of
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the exponentss and t in the past few years, few efforts have been made to determine
the exponentst2(β) and s2(β) and to study systematically the effect of the strength of
the non-linear exponentβ on the non-linear transport exponentst2(β) and s2(β). For
cubic non-linearityβ = 3, the EMA predicts [21] thatt2(3) = 2 and s2(3) = 2 in all
dimensions. By relating the cubic non-linear composite problem to the noise problem [20]
in linear composites, the exponentst2(3) and s2(3) are found to bet2(3) = 2t − κ and
s2(3) = 2s + κ ′, whereκ(κ ′) measures the divergence of relative resistance (conductance)
fluctuations. It is the purpose of the present investigation to extend the results [20, 21]
which are only applicable to cubic non-linearityβ = 3 to the case of arbitrary non-linearity.
We deal with this problem by two methods. Firstly we employ the generalized EMA
which will be discussed in section 2.1 to estimate the exponentst2(β) and s2(β), and
we find thatt2(β) = s2(β) = (β + 1)/2 in all spatial dimensions. Secondly by using a
connection between the non-linear response of the random non-linear composite problem
and the resistance or conductance fluctuations of the corresponding random linear composite
problem, the exponentst2(β) ands2(β) are found to be

t2(β) = −κ

(
β + 1

2

)
+ β + 1

2
t − 3 − β

2
dν

s2(β) = κ ′
(

β + 1

2

)
+ β + 1

2
s + 3 − β

2
dν

respectively, wheret (s) is the conductivity exponent in a C–I(S–C) composite,d is the
dimension of the composite andν is the correlation-length exponent ind dimensions.
κ((β + 1)/2) and κ ′((β + 1)/2) are given byψR((β + 1)/2) + [(β + 1)/2](dν − ζR) =
κ((β + 1)/2) + dν, ψG((β + 1)/2) + [(β + 1)/2](dν − ζG) = κ ′((β + 1)/2) + dν, where
ψR((β + 1)/2)(ψG((β + 1)/2)) characterizes the scaling of the [(β + 1)/2]th cumulant
of the global resistance (conductance) distribution due to local resistance (conductance)
fluctuations in the corresponding linear C–I(S–C) composites,ζR = t − (d − 2)ν and
ζG = s + (d − 2)ν. We prove thatt2(β) is a monotonically increasing function ofβ while
s2(β) is a monotonically decreasing function ofβ, which have the following special values:
t2(1+) = t−dν < 0 ands2(1+) = ζG+dν (d = 2); t2(3) = 2t−κ(2) ands2(3) = 2s+κ ′(2);
t2(+∞) = +∞ and s2(+∞) = 1 + dν (d = 2). The critical behaviour of the non-linear
susceptibility in a C–I composite is very different from that of the non-linear susceptibility
in a S–C composite; the non-linear susceptibility of S–C near the percolation threshold
will always diverge whileχe(β) of the C–I composite can diverge or vanish depending on
non-linearity.

2. Estimates of exponentst2(β) and s2(β)

Consider ad-dimensional hypercubic non-linear conductor network which consists of two
types of bond. We shall consider only bond percolation because it is more convenient for
modelling transport properties. The first type of conductor is assumed to be non-linear and
obeys a current–voltage (I–V ) characteristic of the form given by equation (3). Throughout
this work, the non-linearity is assumed to be weak, so thatχ1v

β−1/g1 � 1. The second
component is assumed to be linear with theI–V response given by equation (4). The
volume fractions of the first and the second components arep and q, respectively. We
havep + q = 1. We are interested in calculating the effective response of the network,
representing by a homogeneous networks of identical conductors, each of which has anI–V

characteristic of the form [13]

i = gev + χe(β)v|v|β−1 + · · · (7)
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where ge and χe(β) are the effective linear and leading-order non-linear responses,
respectively, and are given by [10, 22]

ge = 1

Ld

∑
α

gαv2
α (8)

χe(β) = 1

Ld

∑
α

χαvβ+1
α (9)

where gα and χα are the linear conductivity and non-linear susceptibility of theαth
conductor,vα is the voltage difference across theαth conductor in thelinear random
problem (i.e. obtained by solving the same random network problem with allχα = 0),
andL is the size of the network. The summation is performed over all conductors in the
network. In this paper, higher-order non-linear responses are not taken into account.

We consider the C–I limit in which the first component is percolating(p > pc)

while the second component is insulating, i.e.g2 = 0, and the S–C limit in which the
second component is simultaneously non-percolating and superconducting, i.e.q < qc and
g2 = +∞. The critical behaviour ofχe(β) is given by (5) and (6) in a C–I and S–C
component, respectively.

2.1. Effective-medium approximation

The EMA is an old approach to transport properties of inhomogeneous materials. The EMA
has attracted renewed interest with the development of percolation theory. As mentioned
in [5], while there is a variational principle justifying the EMA for the exponentst and s,
there is no such principle for other exponents, but this does not mean that the EMA cannot
be used in other situations. In fact, the EMA in the context of exponents other thant and
s was used first by Rammal [24] and also by Rammalet al [25]. The EMA, originally
proposed for the cubic non-linearityβ = 3 [11], can be readily generalized to the case of
arbitrary non-linearity. The basis of our method is an exact result given by several workers
[11, 22] that the effective non-linear responseχe(β) can be calculated, to first order in the
non-linearity, by theβ + 1 moments of the local field distribution in a linear composite that
has the same linear conductivity and the same microgeometry [23], namely [5, 10, 11]

χe(β) = pχ1〈Eβ+1〉lin
E

β+1
0

(10)

where〈. . .〉lin denotes a volume average over the volume of the non-linear component in
the linear limit (i.e. whenχ1 = 0), p is the volume fraction of the non-linear component
andE0 is the space-averaged field within the composite.

A useful approximation for an average in (10) is to make the approximate factorization
[11]

〈Eβ+1〉lin ≈ 〈E2〉(β+1)/2
lin . (11)

Equation (11) amounts to a denial of Jensen’s inequality [26], which forβ > 1 gives
〈Eβ+1〉lin > 〈E2〉(β+1)/2

lin , with equality only when the random variableE takes a single value
with probability 1. The right-hand side therefore gives a rigorous lower boundary forχe(β),
although not a directly computable bound sincege is not known exactly. Equation (11) also
corresponds in a sense to the assumption of ‘gap scaling’ which is precisely what does not
occur for multifractal exponents [27–30].
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Since〈E2〉lin is given exactly by [5, 12]

p〈E2〉
E2

0

= ∂ge

∂g1
(12)

wherege andg1 are the effective linear conductivities of the composite and of the non-linear
component, respectively. From (10)–(12),χe(β) can be written approximately as

χe(β) = χ1

p(β−1)/2

(
∂ge

∂g1

)(β+1)/2

. (13)

The EMA is completed by calculatingge from some approximations. One possible
approximation forge is of course the linear EMA, which ind dimensions is given by∑

l

pi

gi − ge

gi + (d − 1)ge

= 0 (14)

wheregi is the linear conductivity of theith component andd is the dimensionality. The
approximation will be accurate in geometries for which the electric field is nearly uniform
within the non-linear component and less accurate when these fluctuations are large, as in a
random mixture near the percolation threshold. Nevertheless, the EMA gives qualitatively
correct critical behaviour, but it predicts incorrect exponents, a phenomenon common in
treating second-order phase transitions by mean-field theory.

Let us consider the C–I limit first. Letg2 = 0; the effective linear responsege is given
by [23]

ge = g1

1 − pc

(p − pc) pc = 1

d
. (15)

Using equations (13) and (15), we obtain

χe(β) = χ1

p(β−1)/2

1

(1 − pc)(β−1)/2
(p − pc)

(β+1)/2. (16)

Thus t = 1 andt2(β) = (β + 1)/2 within the EMA. Whenβ = 3 we recover the result of
cubic non-linearity [20, 21];t2(3) = 2.

For the S–C limit, letg2 = +∞, the effective linear responsege in this case is given
by [23]

ge = g1qc(qc − q)−1 qc = d − 1

d
(17)

and we find that

χe(β) = χ1

q(β−1)/2
q(β−1)/2(qc − q)−(β+1)/2. (18)

Thus s = 1 ands2(β) = (β + 1)/2 within the EMA. Here again we recover the result of
cubic non-linearity [20, 21]:s2(3) = 2 whenβ = 3.

So a crude estimatet2(β) = s2(β) = (β + 1)/2 is found for all spatial dimensionsd in
the EMA.

2.2. Relation to resistance (conductance) fluctuation

A formal relation between the problem of the non-linear effective response in a random
composite withcubic non-linearity and the problem of relative fluctuations (noise) in a linear
random composite has been demonstrated by Stoud and Hui [10]. Later Blumenfeld and
Bergman [19] generalized the result of [10] and presented the relation between the problem
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of non-linear effective response in a random composite witharbitrary non-linearity and the
problem of resistance fluctuations in a linear random composite; the result is [19]

χe(β) ∼ Ld〈δg(β+1)/2
e 〉c (19)

where〈δg(β+1)/2
e 〉c is the higher-order cumulant [24, 25].

The quantity(〈δg(β+1)/2
e 〉c)/(g(β+1)/2

e ) is expected to be [19, 24, 25]

〈δg(β+1)/2
e 〉c

g
(β+1)/2
e

∼ Ld[1−(β+1)/2](p − pc)
−κ((β+1)/2). (20)

Equation (20) defines the exponentκ((β + 1)/2) which reduces to the noise exponentκ(2)

when β = 3. As p → pc, ξ = (p − pc)
−ν → +∞ and, for a finite size system,ξ ≈ L.

Using (19), (20),ξ ≈ L andge ∼ (p − pc)
t , we obtain

χe(β) ∼ (p − pc)
t2(β)

wheret2(β) is given by

t2(β) = −κ

(
β + 1

2

)
+ β + 1

2
t − 3 − β

2
dν. (21)

Equation (20) can also be expressed by [19]

〈δg(β+1)/2
e 〉c

g
(β+1)/2
e

∼ (p − pc)
−{ψR((β+1)/2)−[(β+1)/2]ζR}. (22)

whereψR((β + 1)/2) characterizes the scaling of the [(β + 1)/2]th cumulant of the global
resistance distribution due to local resistance fluctuations [31] in a C–I network. The
exponentψ((β +1)/2) is introduced under a different name and independently by both [33]
and [29, 30]. Some analytic properties of the exponentψ((β + 1)/2) have been discussed
in [32]. Some of these exponents for integers(β + 1)/2 have physical interpretations.
For example,ψ(0) gives the fractal dimensionality of the backboneDB, ψ(1) is equal to
the resistance exponentζR (N–I) or conductance exponentζG (S–N), ψ(2) is equal to the
noise exponentκ (N–I) or κ ′ (S–N) [26, 29, 30], andψ(∞) can be identified as the fractal
dimension of the singly connected bonds (N–I) or singly disconnected bonds (S–N) [34].

Whenp approachespc from above, the correlation lengthξ diverges asξ ∼ (p−pc)
−ν ,

andL ≈ ξ , whereL is the size of the system. From equations (20) and (22) we obtain the
relation betweenκ((β + 1)/2) andψR((β + 1)/2) [31, 32]:

ψR

(
β + 1

2

)
+ β + 1

2
(dν − ζR) = κ

(
β + 1

2

)
+ dν (23)

whereζR is defined by〈R〉 ∼ (p − pc)
−ζR ; 〈R〉 is the average resistance of the network

andζR = t − (d − 2)ν [34].
A similar result will be obtained by using a connection between the non-linear response

of the random non-linear composite problem and the conductance fluctuations of the
corresponding random linear composite problem [7, 12, 33]

χe(β) ∼ (qc − q)−s2(β)

wheres2(β) is given

s2(β) = κ ′
(

β + 1

2

)
+ β + 1

2
s + 3 − β

2
dν. (24)
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The exponentκ ′((β + 1)/2) is related toψG((β + 1)/2) by

ψG

(
β + 1

2

)
+ β + 1

2
(dν − ζG) = κ ′

(
β + 1

2

)
+ dν (25)

whereζG is defined by〈G〉 ∼ (qc −q)−ζG , with 〈G〉 the average conductance of the network
andζG = s + (d − 2)ν [34]. The physical meaning ofψG((β + 1)/2) is thatψG((β + 1)/2)

characterizes the scaling of the(β + 1)/2 cumulant of the global conductance distribution
due to local conductance fluctuation in a S–C composite. Note thatt2(β) and s2(β) can
also be expressed in terms ofψR((β + 1)/2) or ψG((β + 1)/2) by using (23) and (25). The
exponentψG((β + 1)/2) has been discussed in [33].

Previous studies [12, 20, 21] on cubic non-linearity,β = 3, give t2(3) = 2t − κ(2) and
s2(3) = 2s + κ ′(2). One can easily check that (21) and (24) will reduce to 2t − κ(2) and
2s + κ ′(2) when β = 3, respectively; by definition [32],κ(2) = κ and κ ′(2) = κ ′. The
values of the exponents aret2(3) > 0 ands2(3) > 0 for d = 2, d = 3 andd = 6 if one
uses previously derived bounds onκ andκ ′ and estimates ont ands [5, 7]. For a summary
of experiments on noise in percolating mixtures, we refer the reader to [30]. This implies
that the cubic non-linear susceptibilityχe(3) will have the same critical behaviour as the
effective linear conductivity, namelyχe(3) will vanish (diverge) in a C–I(S–C) network
near the percolation thresholdpc(qc).

The analytic and numerical results concerning theψR((β+1)/2) have already appeared.
Two approximate functions [32] both of which agree with the series results for all
(β +1)/2 > 1 and with existing numerical simulations have been constructed in a randomly
diluted resistor network on a dimensional hypercubic lattice at the percolation thresholdpc;
one of the two approximate functions is

ψR

(
β + 1

2

)
= 1 + (νDB − 1)1−((β+1)/2)(ζR − 1)(β+1)/2 (26)

whereDB is the fractal dimensionality of the backbone.ν = 4
3, ζR = 1.297 andDB = 1.62

[34] for d = 2, andν = 0.89, ζR = 1.07 andDB = 1.74 [34] for d = 3.
For d = 2, by duality considerations, de Arcangeliset al [33] have proven that

ψR((β+1)/2) of a random resistor network andψG((β+1)/2) of a random superconducting
network coincide. So the approximate functions forψR((β + 1)/2) in a random resistor
network in d = 2 can also be used to calculateψG((β + 1)/2) in a S–C composite.
Above two dimensions, the duality relation no longer holds. As a result, there appears to
be no simple correspondence betweenψR((β + 1)/2) of the random resistor network and
ψG((β + 1)/2) of the random superconducting network. So ford = 3 the approximate
functions forψR((β +1)/2) in a random resistor network are not equal toψG((β +1)/2) in
a random superconducting network. Until now the analytic form ofψG((β + 1)/2) above
two dimensions in a random superconducting network has not been thoroughly investigated
[26], despite the fact that some numerical values have been calculated [35–37]. So in this
paper we present only our results ofs2(β) for d = 2.

Now we are in a position to discuss some properties which characterize the exponents
t2(β) ands2(β). The properties of the exponentst2(β) ands2(β) will become very important
when one wants to know how the magnitude of the non-linear susceptibilityχe(β) depends
upon the non-linear exponentβ, as we now proceed to demonstrate. Let us first discuss the
properties of the exponents2(β) in d = 2. We shall prove that

s2(β) > 0 (27)
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Figure 1. The exponents2(β) as a function ofβ for a two-dimensional S–C network:• ,
results given by the EMA;�, results calculated from equation (24). The values ofψ((β +1)/2)

used to construct the plot are from [32].

and
ds2(β)

dβ
< 0 (28)

for β > 1. The proof is very simple. By using equation (25),s2(β) can be written in terms
of ψG((β + 1)/2), namely

s2(β) = ψG

(
β + 1

2

)
+ dν + β + 1

2
(s − ζG).

Since, ford = 2, s = ζG [34], ψ(+∞) = 1 andψ(1) = ζG [32], from the above equation,
we obtain

lim
β→+∞

[s2(β)] = 1 + 2ν > 0 (29)

lim
β→1+

[s2(β)] = ζG + 2ν > 0 (30)

and
ds2(β)

dβ
= dψG((β + 1)/2)

d((β + 1)/2)
< 0. (31)

In deriving equation (31), we have used dψG((β + 1)/2)/d((β + 1)/2) < 0 [32]; this
inequality is a consequence of the inequalityxn > xn+1 that appears in the original work
of Rammalet al [25]. From (27) we obtainχe(β) → +∞ as q → qc from below. So,
as q → qc, not only ge but alsoχe(β) diverge. From (28) we predict thats2(β) is a
monotonically decreasing function ofβ. This implies that, asβ increases, the non-linear
susceptibilityχe(β) will diverge more slowly.

Next we discuss the properties of the exponentt2(β). We shall prove that there exists
a critical valueβc at which t2(βc) = 0; t2(β) < 0(1 < β < βc) and t2(β) > 0(β > βc).

By using equation (23),t2(β) can be written in terms ofψR((β + 1)/2):

t2(β) = −ψR

(
β + 1

2

)
− dν + β + 1

2
(ζR + t). (32)

SinceψR(1) = ζR [32], we obtain

lim
β→1+

[t2(β)] = t − dν 6 0. (33)
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By usingψR(+∞) = 1 [32], we obtain

lim
β→+∞

[t2(β)] → +∞. (34)

Using dψR((β + 1)/2)/d((β + 1)/2) < 0, we obtain

dt2(β)

dβ
= −1

2

dψR((β + 1)/2)

d((β + 1)/2)
+ 1

2(ζR + t) > 0. (35)

The inequality in (33) is obtained by direct calculation oft2(β) using the following:t = 1.30
andν = 4

3 for d = 2; t = 1.958 andν = 0.89 for d = 3; t = 6 andν = 1
2 for d = 6 [27].

Since the critical behaviour ofχe(β) is given by (5) nearpc, the result of (35) implies that
the non-linear susceptibility will vanish more quickly asβ increases. From (33)–(35), we
predict that there exists a critical valueβc at which t2(βc) = 0. While the exponents2(β)

is always positive, however, the exponentt2(β) may take positive values(β > βc), a zero
value(β = βc) and negative values(1 < β < βc). As a consequence, the magnitude of the
non-linear susceptibilityχe(β) in a C–I network may change dramatically asβ increases.
As p → pc from above, we have

χe(β) → 0 β > βc t2(β) > 0 (36)

χe(β) → constant β = βc t2(β) = 0 (37)

χe(β) → +∞ 1 < β < βc t2(β) < 0. (38)

We have calculated the critical value ofβc by solving (21), and we obtainβc = 1.947(d = 2)

andβc = 1.372(d = 3).
The non-linear susceptibilityχe(β) in a C–I network in the region 1< β < βc will

show some anomalous behaviour. In this region, asp → pc, the linear responsege

will approach zero; however,χe(β) will diverge. Such a result is somewhat unexpected,
because in a C–I composite both the linear responsege and the non-linear responseχe(β) are
expected to approach zero asp → pc. However, we found that the non-linear susceptibility
χe(β) will diverge, which usually occurs in a S–C composite, and this cannot be explained
from the viewpoint of percolation theory. Unfortunately we cannot explain this anomalous
phenomenon. If one assumes that this arises because, near the percolationpc, not only the
restricted geometry of the path through which current flows, but also the strength of the
non-linear exponentβ have effects onχe(β), the final behaviour has contributions from
both; however, one cannot explain why the exponents2(β) does not change sign asβ
increases.

We also calculate the exponentst2(β) and s2(β) numerically. The results are given in
figures 1 and 2. As mentioned above, the EMA gives incorrect exponents, especially for
s2(β); the EMA predicts thats2(β) is an increasing linear function ofβ, while (24) predicts
that s2(β) is a decreasing function ofβ. The EMA also predicts thats2(+∞) = +∞,
while (24) givess2(+∞) = 1 + dν. For t2(β), in the region whenβ is very small, the
EMA also gives incorrect exponents; for example, in this region, the EMA predicts that
t2(β) > 0 while (21) givest2(β) < 0. However, forβ ≈ 6, the EMA gives a somewhat
correct exponent fors2(β) and, for 2< β < 3, the EMA also gives the correct exponent for
t2(β). So the EMA can still be used as a first step towards estimates of critical exponents.

3. Conclusion

In this work the critical exponentst2(β) and s2(β) governing the behaviour of non-linear
susceptibilityχe(β) are obtained by two methods. Firstly, we employ the generalized EMA
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Figure 2. The exponentt2(β) as a function ofβ for a C–I network: (a)d = 2; (b) d = 3. The
symbols are the same as in figure 1 except that the open squares are the data calculated from
equation (21).

which is applicable to arbitrary non-linearity to estimate the exponentst2(β) and s2(β),
and we find thatt2(β) = s2(β) = (β + 1)/2 in all spatial dimensions. Secondly, by
using a connection between the non-linear response of the random non-linear composite
problem and the resistance or conductance fluctuations of the corresponding random linear
composite problem, the exponentst2(β) ands2(β) are found to bet2(β) = −κ((β +1)/2)+
[(β + 1)/2]t − [(3 − β)/2]dν ands2(β) = κ ′((β + 1)/2) + [(β + 1)/2]s + [(3 − β)/2]dν,
respectively. We prove thatt2(β) is a monotonically increasing function ofβ while s2(β) is
a monotonically decreasing function ofβ, and the non-linear susceptibilityχe(β) of the S–C
network will diverge asq approachesqc from below. The non-linear susceptibilityχe(β)

of a C–I network may show a complicated behaviour. There exists a critical valueβc at
which t2(βc) = 0. Whenβ > βc, t2(β) > 0, andχe(β) will vanish asp approachespc from
above. However, when 1< β < βc, t2(β) < 0, andχe(β) will diverge asp approachespc.
We cannot explain this anomalous behaviour and we hope that further investigation may be
carried out along these lines.

Our predictions presented above should be compared with the results of numerical
simulations and experiments and we hope that our paper may stimulate numerical
simulations and experiment investigation on this problem. It would be worthwhile to study
the exponents2(β) above two dimensions where we can no longer exploit duality arguments
to obtain a relation with the random resistor network.
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